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I. Introduction

Experimental data on relaxation phenomena in diverse areas of condensed

matter physics are quite generally found to exhibit slower than exponential

decay for long times in the form (see ref. 1 and references therein)

exp[-at b, a>O, O<b<l.

The physical origin of this behavior will be discussed here from several

points of view. These include the necessity of time dependent transition

rates (TDTR) in relaxation theory and their treatment via a time scale trans-

formation, the constraints on the form of the TDTR from quantum mechanical

considerations and a theorem in Fourier transforms, the requirements on micro-

scopic distributions in frequency of the underlying relaxing entities such as

dipoles or charge carriers from basic probability theory of limit distribu-

tions for sums of independent random variables, and consideration of the

generalized master equation (GHE) with an underlying nonHarkoffian stochastic

process with TDTR, all leading to long time nonexponential relaxation given by

Eq. (1). We also discuss the relationship of Eq. (1) with the mathematical

framework of the continuous time random walk (CTRW), GHE, and the H-theorem of

statistical mechanics. A quantum mechanical model is described which leads to

Eq..(1) and in addition predicts a relaxation time renormalization which

alters activation energies, and temperature and molecular weight dependences.

These predictions have been verified experimentally in electronic materials,

ionic conductors, glasses, polymer melts, and other materials. The calcula-

tional ease of the time scale transformation method is demonstrated for an

important physical example. The general applicability of Eq. (1) to elucidate

the vast array of experimental results in relaxation phenomenon in condensed

matter is briefly described. Thus TDTR leading to Eq. (1) is found to be

essential in describing relaxation phenomena.
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II. Time Scale Transformation

The traditional phenomenological description of relaxation is based on

stochastic processes with time independent transition rates (TITR) leading to

the usual exponential decay. In view of the experimentally observed nonexpo-

nential behavior, given, by Eq. (1), it is necessary to consider TDTR in the

stochastic theory. We have shown2 that a special class of TDTR given byjtb-l,

can be related to TITR by means of a time scale transformation, for which the

relaxation function is of the form Eq. (1) and the time scale transformation

is the monomial, 8(t) = atb. This comes about by the requirement that the

TDTR be such that the relaxation function associated with it depend only on

the ratio t/T where x is a constant characteristic time and in the time trans-

formed frame this process becomes one with TITR with corresponding relaxation

function exp(-8/T ) where ra is another constant. The only time transforma-

tion that has the property 0(t) = x which converts a TDTR to a TIDR as above

is the monomial.

III. The Paley-Wiener Theorem and TDTR

The transition rate tan be calculated quantum mechanically and the use of

the golden rule leads to TITR. However the golden rule is an approximation

and this breaks down whenever the energy difference of the two states between

which transitions are taking place goes to zero. In the relaxation regime,

10
typically in the range of 10 Hz and below, such characteristic energy dif-

ferences may approach zero and a more careful calculation leads to TDTR. A

4
general bound on TDTR is provided by the Paley-Wiener theorem in Fourier

transform theory, which is found to lead to a lower bound on the relaxation

function in the form Eq. (1). The requirements of the Paley-Wiener theorem in

our context are semiboundedness of the energy spectrum of the Hamiltonian and

A4 -



the quadratic integrability of the relaxing states, both of whieh are physi-

cally acceptable.

The relaxing system is a complex many-body system whose low energy exci-

tations below approximately 10 Hz determine TDTR. A detailed knowledge of

the many-body excitations is not available at present. However, the many-body

density of ttates of a random matrix Hamiltonian has been deduced by Wigner

sometime ago and this can be used here to obtain TDTR. Interestingly, this

also leads to Eq. (1). More details of this dynamical model are given in Sec.

VIII.

IV. Limit Distributions of Low Energy Excitations

Given the universal form of the macroscopic relaxation function in

Eq. (1), one is led to consider a microscopic mechanism underlying relaxation

phenomenon in general. We may think of the relaxing body as being composed of

some species of relaxing entities such as electric dipoles in a dielectric,

charge carriers in a semiconductor, etc., each of which has identically dis-

tributed energy variables with the same energy distribution. The macroscopic

energy distribution function p(c) associated with the relaxing body for low

energies is the limit distribution of normalized sums of the microscopic

energy variables. A similar procedure is involved in statistical mechanics

for deriving equilibrium ensemble distributions. The resulting macroscopic

.density distribution p(s) necessarily obeys the relationship
5

p(az+b) (ala2/a)d 'p(al(c-z')+b)p(a2 '+b2) (2)

for every set of parameters a >0 , bi with the corresponding a > 0, b related

to the parameters ai, bi. The relaxation function is proportional to the

modulus square of the Fourier transform, Ic(t)j2 , of the energy distribution

function p(e). For distributions obeying Eq. (2) this is necessarily of the

form
5
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IcC(t)j 2  '.aI I , a>O, O<b<2 (3)

If in addition, the spectrm of the Hamiltonian is semibounded as in Sec. III,

then the Paley-Wiener theorem applies and the values of b have to be in the

smaller range O<b<l, leading us again to Eq. (1). FoL such microscopic

models, we see that the Paley-Wiener bound becomes exact.

V. An Oscillator Relaxation Model

A chain of coupled oscillators can serve as a model of a Brownian

particle in contact with a heat bath.6 For arbitrary oscillator interactions,

the Brownian particle obeys a generalized Langevin equation with a time

dependent friction coefficient, and a Gaussian random force determined solely

by the Hamiltonian of the coupled oscillators and the canonical distribution

of the initial coordinates and momenta. The Paley-Wiener theorem4 can be

applied to this problem if the normalized frequency spectrum of the oscillator

assembly is bounded from below. The Fourier transform of the spectrum is the

momentum autocorrelation function of the single Brownian oscillator and this

is then bounded by a function of the form Eq. (1). If the bound is assumed, a

time scale transformation can be used to convert the generalized Langevin

equation into the classical Lange'in equation with a time-independent friction

coefficient and a Gaussian white noise random force. Transforming back to the

t-frame, we find that the covrriance of the external random force takes the

form of white noise modulated by a monomial friction coefficient, tb-i. it

can be noted that a covariance of the same form is obtained in the long time

limit from fractional Brownian motion.7  However, this connection to frac-

tional Brownian motion is rather tenuous because the form of the noise does

not uniquely specify the stochastic equation of motion.

4
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VI. Continuous Time Random Walk and Generalized Master Equation

There exists a mathematical framework of the continuous time random walk

(CTRW)8 and the associated generalized master equation (GME)9 for studying

time-dependent problems. The basic quantity entering the formalism is the

waiting time distribution function *(t), which is the probability density

function for the time between the arrival of a walker at a given lattice point

and the initiation of the next step to another site. If the waiting time

distribution function is taken as minus the derivative of Eq. (1), then the

CTRW framework can be applied to relaxation problems in condensed matter.

When the moments p of the waiting time distribution functions are all finite,

the Markoffian master equation is an appropriate descriptinn for times which

are large compared with t =sup(p M/m! . For *(t) given by minus the deriva-

tive of Eq. (1) it is found that t is finite for l<b<2 and infinite for
10

O<b<l. Thus a non-Markoffian description is always required for relaxation

functions of the form Eq. (1).

In most applications of CTRW, in order to have a 4s(t) which is universal

for all sites, one has to-perform an average over all possible configurations

of the walkers. This physical picture is inappropriate for materials where

short range order exists, which is the common situation in condensed matter.

A m6del, described in Sec. VIII, in which a relaxation function of the form

Eq. (1) arises from a fundamental mechanism that is operative at every hop of

the walker from any lattice site, produces a *(t) universal for all sites

without averaging.

VII. CTRW, GME, and the H-Theorem

In CTRW, the weighting time distribution function is related to the

memory function of the GME.9  If the GHE is to describe a time-dependent

statistical mechanical phenomenon, it must obey the H-theorem, which is a

)6
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statement of the second law of thermodynamics. The H-theorem cannot accommo-

date arbitrary memory functions and therefore also arbitrary waiting time

distribution functions. The choice of minus the derivative of Eq. (1) for the

waiting time distribution in the CTRW along with the time scale transformation

of Sec. II enables us to demonstrate the validity of the H-theorem for this

choice.
10

VIII. Model for Low-Energy Excitations

A model1 in which a relaxing primary species, such as a reorienting

electric dipole, a hopping charge carrier or a flexing polymer chain, inter-

acts with a new class of very low energy states (correlated states or CS)

produces a relaxation function of the form Eq. (1) as well as correlates the

dispersion with shifts in activation energies, molecular weight dependence,

temperature dependence, and other quantities. A random matrix formulation of

energy level distributions can be used to study the properties of the CS. It

is found that for materials having short-range spatial order, the effect of

such CS excitations is to alter a constant TITR T to a TDTR given by T1

exp(-ny) (Wct)-n for times greater than approximately W-lc Here n is a

measure of the coupling strength of the CS and is restricted to O<n<l. The

cutoff frequency w depends on material structure but is typically of the
c

order 10 Hz for glasses, polymers, and amorphous metals and semiconductors,

and Y-0.577.

The above TDTR results in a relaxation function of the form Eq. (1) with

b=l-n and a shifted relaxation time Ip = a- /b given by

p = [(l-n)en .c o 1 /l-n (4)

The CS model is therefore able to identify the physical meaning of the param-

eters in Eq. (1) and is able to make predictions other than dispersion.

7



The implications of Eq. (4) are widespread. For example if t is temper-

ature activated with activation energy EA, then the relaxation process will

appear to be activated with energy E*=E /(1-n). This prediction has been
A A

11
verified in detail for transient current in chalcogenide glasses. The

correct value of E* is predicted from the measured value of E and the value
A A

of n obtained from the dispersion of the current. In addition, the values of

E* correlate correctly with changes in the dispersion as the value of n is
A

changed by doping.

Another result of Eq. (4) is the prediction of molecular weight depen-

dences of viscoelastic quantities for polymer melts.12  Low molecular weight

polymer chains move essentially independently and the relaxation times of

these chains scale as M2 . As the molecular weight increases, entanglements

with neighboring chains are more frequent and large scale cooperative motions

couple via the entanglement junctions to the CS of the polymer system. The

longest relaxation times of the chain then scale, by Eq. (4), as H2(1n)"

If, in addition, spatial entanglements are imposed by confining the chain

within a tube-like region, quantitatively accurate predictions are obtained

concerning the viscosity .i (where rlcsMi), the recoverable compliance Jo, thee' h

plateau modulus G0 and other quantities in the terminal regime for both linear
N

and branched polymers. For linear polymers, n is typically between 0.4 and

0.5, and this results in 3.3<p<4 and 2<J GO<3. For branched polymers, as
-e N-

determined from dispersion, n typically has larger values which implies larger

p and JGi. These quantities can simultaneously be correlated with changes in

the temperature dependence by the flow activation energy. All these features

are in remarkable agreement with data. The ability of this model to describe

13polymer melt dynamics is far superior to the reptation model. "Details of

the polymer melt model are presented elsewhere.
12
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Other implications of Eq. (4) include dielectric and structural relaxa-

14
tions near T for polymers and small molecule glasses, y relaxation of bulkg

15 16
polycarbonate, and volume recovery of PVAC. Thus the dispersion given by

Eq. (1) and the shifted relaxation times given by Eq. (4) play important roles

in a large number of materials and relaxation phenomena.

IX. Calculations Using Time Scale Transformations -

Within the model of CS excitations of Sec. VIII, the time scale trans-

formation of Sec. II becomes 8(t)=A t 1 - n where A =(l-n)- e-nyw- n . The use ofn n c

this technique considerably simplifies calculations of relaxation phenomena.

This is illustrated here by considering hole transport across a biased chal-

cognide glass sample of thickness L. In the e-frame, hopping relaxation at

any site will have the same time independent transition rate W . The current5

in the 0-frame, I(O),is easily determined and the transient current in the

laboratory t-frame can be calculated by I(t)=I(O)(dO/dt). With e(t) given as

above, it is found that I(t)at n for t<<tT and a more rapid drop-off for

t>>t The transit time t U(E/LWs) /1-n exhibits superlinear thickness and

electric field dependences and is thermally activated with energy E=E A/(I-n)

if W is thermally activated with energy E A

X. • Applicability of Fractional Exponential Relaxation

The fractional exponential relaxation function given by Eq. (1) along.

with the shifted relaxation times of Eq. (4) lead to unifying predictions in

many fields and materials. These include dielectric relaxation, viscoelastic

relaxation, nuclear spin relaxation, flicker 1/f noise, generation-

recombination noise, transient electrical transport, transient capacitance,

photoluminescence, volume and enthalpy recovery, physical aging, plasticity

and yielding, and polymer melt dynamics. Further study can be expected both

9



to yield deeper insight into the nature of low frequency fluctuation, dissipa-

tion and relaxation phenomena in condensed matter, and to result in predic-

tions for many other materials and applications.

XI. Summary and Conclusions

The dominance of fractional time exponential relaxation of the form

Eq. (1) in diverse phenomena has been emphasized here. Such relaxation func-

tions require that the accompanying transition rates have power law time

dependences. These dependences can be physically motivated in s-veral dif-

ferent ways. However the dispersion of the relaxation predicted b q. (1) is

observed to correlate with several physical quantities includin4 -tivation

energies, and temperature and molecular weight dependences. A pb model

in which a relaxing species interacts with a set of low energy states is able

to predict such correlations. It is important to stress that a proper

description of relaxation requires not only fractional powers of time in the

dispersion as in Eq. (1), but also relaxation times which shift with changes

in dispersion as in Eq. (4).

-10
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